Multivariate Quadrature for Representing Cloud Condensation Nuclei Activity of Aerosol Populations

نویسندگان

  • Laura Fierce
  • Robert L. McGraw
چکیده

Atmospheric aerosol is comprised of distinct multicomponent particles that are continuously modified as they are transported in the atmosphere. Resolving variability in particle physical and chemical properties requires tracking high-dimensional probability density functions, which is not practical in large-scale atmospheric simulations. Reduced representations of atmospheric aerosols are needed for efficient regionaland global-scale chemical transport models. Although the aerosol size-composition distribution is described by a high-dimensional probability density function, here we show that cloud condensation nuclei (CCN) activity of aerosol populations can be represented with high accuracy using an optimized set of representative particles. The sparse representation of the aerosol mixing state, designed for use in quadrature-based moment models, is constructed from a linear program that is combined with an entropy-inspired cost function. Unlike reduced representations common to large-scale atmospheric models, such as modal and sectional schemes, the maximum-entropy approach described here is not confined to pre-determined size bins or assumed distribution shapes. This study is a first step toward a quadrature-based aerosol scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: implications for cloud condensation nucleus activity

active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH an...

متن کامل

Six-moment Representation of Multiple Aerosol Populations in a Sub-hemispheric Chemical Transformation Model

This letter describes the first application of the Quadrature Method of Moments (QMOM) [McGraw, 1997] in a 3-D chemical transformation and transport model. The QMOM simultaneously tracks an arbitrary (even) number of moments of a particle size distribution directly in space and time without the need for explicitly representing the distribution itself. The host 3-D model, the Global Chemistry Mo...

متن کامل

Estimating black carbon aging time-scales with a particle-resolved aerosol model

Understanding the aging process of aerosol particles is important for assessing their chemical reactivity, cloud condensation nuclei activity, radiative properties and health impacts. In this study we investigate the aging of black carbon containing particles in an idealized urban plume using a new approach, the particleresolved aerosol model PartMC-MOSAIC. We present a method to estimate aging...

متن کامل

Aerosol hygroscopicity and cloud condensation nuclei activity during the ACExp campaign: implications for cloud condensation nuclei parameterization

Aerosol hygroscopicity and cloud condensation nuclei (CCN) activity under background conditions and during pollution events are investigated during the AerosolCCN-Cloud Closure Experiment (ACExp) campaign conducted at Xianghe, China in summer 2013. A gradual increase in size-resolved activation ratio (AR) with particle diameter (Dp) suggests that aerosol particles have different hygroscopicitie...

متن کامل

Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations

Atmospheric aerosol particles influence global climate as well as impair air quality through their effects on atmospheric visibility and human health. Ultrafine (<100 nm) particles often dominate aerosol numbers, and nucleation of atmospheric vapors is an important source of these particles. To have climatic relevance, however, the freshly nucleated particles need to grow in size. We combine ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017